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Introduction

Recent advancements in artificial intelligence 
(AI) have leveraged computer science with large 
datasets to improve predictive and classification 
capabilities, which are crucial for problem-solving 
in radiology.1 Machine Learning (ML), the driving 
force behind AI’s effectiveness, harnesses 
computational models and algorithms to analyze 
raw data for classification and prediction tasks.2 AI 
utilizes a multi-layered network of interconnected 
nodes emulating the intricate neuronal structure of 
the human brain. These include an input layer that 
initially receives data, a hidden layer that discerns 
data patterns, and an output layer that presents 
the results of the processed data.2

The evolution of AI has propelled us 
from a reliance on manually intensive ML 
techniques to the more autonomous realms 
of deep learning (DL). This shift has reduced 
our dependence on extensive engineering 
knowledge and domain-specific expertise, 
particularly in extracting features from raw 
data.3 This progression has proved pivotal in 
managing large-scale datasets, enhancing results, 
and augmenting performance with increased 
data exposure. Within the spectrum of DL 
methodologies, convolutional neural networks 
have emerged to transform image analysis and 
have particularly revolutionized the use of AI 
applications in radiology. The advancements of 
AI in the domain of clinical radiology are notably 
evident, with breast imaging emerging as a key 
beneficiary of this technological progress.4,5 

The application of AI in breast imaging 
presents a range of clinical uses, from improving 
breast cancer screening and risk stratification,6–8 

to aiding in making treatment decisions by 
predicting axillary involvement,9 neoadjuvant 
therapy responses,10 and recurrence risks.11 A 
significant breakthrough in the application of AI 
in breast imaging lies in its potential to boost 
the specificity of breast imaging tests, enabling 
accurate discrimination between benign and 
malignant breast lesions. 

A recent systematic review and meta-analysis 
looked at radiomic analyses of preoperative 
diagnostic imaging of the breast. Data from 
31 studies was analyzed,12 with 17 studies 
contributing to the meta-analysis. The study 
included 8,773 patients, with a cohort comprised of 
56.2% malignant breast cancers and 43.8% benign 
breast lesions. The findings showed that nine of 
the included studies reported the value of radiomic 
properties from MRI to differentiate malignant 
and benign breast cancer, with a sensitivity of 
0.91 (95% CI: 0.89–0.92) and a specificity of 
0.84 (95% CI: 0.82–0.86). In the four studies 
that included mammography, the sensitivity was 
0.79 (95% CI: 0.76–0.82) with a specificity of 
0.81 (95% CI: 0.79–0.84), and in the three studies 
that included ultrasound, the sensitivity was 
0.92 (95% CI: 0.90–0.94) with a specificity of 
0.85 (95% CI: 0.83–0.88) in differentiating between 
malignant and benign lesions. 

Additionally, in a validation study, Lee et al.13 
compared the effectiveness of commercial AI 
software, assessing its performance and reading 
time against the proficiency of both breast and 
general radiologists. The AI model surpassed 
the diagnostic accuracy of radiologists across 
all levels of expertise, with an area under the 
curve (AUC) of AI alone, breast radiologist, and 
general radiologist groups of 0.915 (95% CI: 
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0.876-0.954), 0.813 (95% CI: 0.756–0.870), 
and 0.684 (95% CI: 0.616–0.752), respectively. 
Further, the use of AI assistance notably reduced 
the reading time for breast radiologists from 
82.73 seconds to 73.04 seconds, p < 0.001, while it 
increased the reading time for general radiologists 
from 35.44 seconds to 42.52 seconds, p < 0.001.

Moreover, a multicentric study which 
included 144,231 screening mammograms from 
85,580 U.S. women and 166,578 screening 
mammograms from 68,008 Swedish women, 
revealed that AI algorithms combined with a 
radiologist’s review showed an AUC of 0.942 
with a significantly improved specificity 
of 92.0% and an unchanged sensitivity.14 This 
study demonstrates the potential of AI as an 
adjunctive tool in interpreting mammographic 
screenings. Furthermore, AI’s efficacy in breast 
cancer detection extends to modalities beyond 
digital mammography, including digital breast 
tomosynthesis, ultrasound, and MRI.14

In fact, within AI-based computer-aided 
systems, two distinct classifications have 
emerged: computer-aided detection (CADe), 
which identifies lesions, and computer-aided 
diagnosis (CADx), which classifies the identified 
lesions as benign or malignant.15 Radiologists 
can utilize these tools to assess if abnormalities 
detected by CADe or CADx require further 
investigation. Therefore, CADx can increase 
specificity by distinguishing lesion types, and 
CADe can improve sensitivity in mammography 
screenings, acting as a triage tool to highlight 
suspicious cases and confirm cancer-free 
diagnoses, thereby streamlining workflows.15

This shift from traditional mammography to 
CAD systems, which have often led to increases 
in unnecessary follow-ups without better cancer 
detection,15–17 to more effective AI-CAD systems 
that equal or even exceed the diagnostic 
performance of radiologists is a significant 
development.17,18 These CAD systems can both 
address the global shortage of radiologists skilled 
in breast imaging, minimize the dependence on 
specialized radiologists to interpret breast images, 
while potentially reducing unnecessary biopsies 
and treatments, which represents a movement 
toward precision medicine. For patients, the use 
of AI in radiology could alleviate the psychological 
impact and anxiety associated with false-positive 
results.19,20 Operationally, these AI models, 
designed to process extensive imaging data 
efficiently, can ease the workload of radiologists 
and promote cost-effective healthcare resource 

allocation. This efficiency could lead to significant 
cost savings, potentially re-allocating funds 
to improve other aspects of patient care and 
medical research.

Although we have been slowly incorporating 
AI into clinical practice, and some AI algorithms 
have received FDA approval,21 numerous 
challenges remain when applying these 
developments effectively in clinical practice. 
These challenges include the generalizability 
and transferability of AI research, which may be 
hampered by a limited number of multicentric 
studies and a lack of diverse population 
demographics.22 Transparency issues, notably 
the “black box” nature of AI neural networks, 
hinder the acceptance of AI systems, which 
necessitate the development of methodologies for 
rigorous peer review and validation.23 Moreover, 
the focus of AI studies on diagnostic metrics 
needs a shift toward tangible clinical outcomes, 
such as mortality rates or surrogates, to provide 
concrete evidence of AI’s benefits.24 Also, from a 
liability standpoint, different legal responsibilities 
have been raised during the integration of AI 
into clinical practice. Regarding liability in cases 
where AI can replace the radiologist, especially 
considering that the algorithm development 
process usually involves many steps with different 
experts, it is critical to define who should be held 
responsible for the results in situations where 
AI misinterpretation could potentially cause 
patient harm.2 Governance also emerges as a 
critical barrier, with regulatory bodies such as 
Health Canada25 and the FDA26 demanding clear 
guidelines and stringent testing for AI medical 
devices, to ensure their safety and efficacy before 
clinical adoption. These challenges underscore 
the complexity of integrating AI into healthcare 
and the need for careful consideration to maintain 
patient trust and the integrity of medical services.

Conclusion

In conclusion, the integration of AI in breast 
imaging is set to refine the workflow and efficiency 
of breast radiologists and help to manage the 
growing caseload without overwhelming the 
professionals. While AI assists in diagnostic 
tasks, it is important to keep in mind that it will 
not supplant radiologists due to their role in 
decision-making and other complex tasks; rather, 
the synergy between human expertise and AI 
promises to enhance patient care and diagnostic 
accuracy. This integration represents a significant 
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advancement in imaging, potentially impacting 
the entire breast imaging lifecycle. (Figure 1.) 
Addressing the challenges of integrating AI into 
clinical practice is essential to leverage its full 
potential for enhancing patient care.
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Figure 1. Impact of AI in the Breast Imaging Lifecycle; image courtesy of Vivanne Freitas, MD, MSc. 
and Renata Pinto, MD, MSc.
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