About the Authors

Renata D'Alpino Peixoto, MD, PhD

Dr. Peixoto is a Clinical Assistant Professor at the University of British Columbia and a medical oncologist at BC Cancer, Vancouver Centre, specializing in gastrointestinal cancers. She completed her PhD in Oncology Universidade Nove de Julho, focusing on pancreatic cancer. She received her medical degree at Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo in 2006, completed her Internal Medicine at Faculdade de Medicina da Universidade de Sao Paulo and Medical Oncology Residency at Hospital Sirio Libanes, Sao Paulo, Brazil. She subsequently undertook a Gastrointestinal Oncology fellowship at BC Cancer-Vancouver from 2012 to 2014. Her research interests include molecular studies, outcomes-based research, and clinical trials in gastrointestinal cancers.

Affiliations: B.C. Cancer Agency, Vancouver, B.C.

Thiago Miranda do Amaral, MD

Dr. Thiago Miranda do Amaral completed his residency in Medical Oncology at the Superior School of Health Sciences of Brasília and holds a master's degree from the Instituto Sírio-Libanês de Ensino e Pesquisa. He is currently a clinical-research Fellow in Gastrointestinal Oncology at BC Cancer, Vancouver.

Affiliations: B.C. Cancer Agency, Vancouver, B.C.

Treatment of dMMR Metastatic Colorectal Cancer in 2025

Renata D'Alpino Peixoto, MD, PhD Thiago Miranda do Amaral, MD

Introduction

Deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC), accounting for approximately 4–5% of cases, represents a distinct molecular subgroup with unique therapeutic implications. These malignancies are characterized by a high mutational burden and increased immune cell infiltration, making them particularly responsive to immune checkpoint inhibitors (ICI). Conversely, this subgroup tends to be less sensitive to traditional chemotherapy.

ICI in mCRC

Programmed cell death protein 1 (PD-1) blockade initially demonstrated success in many refractory malignancies. However, in one of the early studies, only one out of 33 patients with mCRC responded to treatment.⁴ Notably, this patient had a dMMR tumour. This pivotal observation led to extensive clinical trials evaluating PD-1 inhibitors, either alone or in combination with a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor (ipilimumab), in dMMR mCRC.⁵⁻⁹ These studies ultimately established immunotherapy as the cornerstone of treatment for this molecular subtype.

As with most oncology drugs, ICI were initially studied in refractory dMMR mCRC. Following remarkable responses and the emergence of long-term survivors, their efficacy was subsequently evaluated in the first-line setting, leading to a paradigm shift in the management of dMMR mCRC. The first major clinical trial to draw global attention to immunotherapy in mCRC was the non-randomized Phase II KEYNOTE-016 study.⁵ This trial evaluated the efficacy of pembrolizumab (PD-1 inhibitor; 10 mg/kg every 14 days) in three small patient cohorts: 10 patients with dMMR mCRC, 18 with proficient mismatch

repair (pMMR) mCRC, and 7 with dMMR non-CRC malignancies. Among patients with dMMR mCRC, the overall response rate (ORR) was 40%, and the 20-week immune-related progression-free survival (PFS) rate was 78%. In contrast, no responses were observed in pMMR mCRC, and only 11% of patients remained progression-free at 20 weeks.

Nivolumab, another PD-1 inhibitor, demonstrated significant activity as monotherapy in one of the Phase II CheckMate-142 trial cohorts. In this cohort, 74 patients with dMMR mCRC, including 53 who had received at least one prior line of systemic therapy, were treated with nivolumab (3 mg/kg every 2 weeks). The study reported an ORR of 31.1% and a disease control rate (DCR) of 69%, with eight patients experiencing responses lasting over a year.¹⁰

Another cohort within the CheckMate-142 trial explored the combination of nivolumab (3 mg/kg) with ipilimumab (1 mg/kg) administered every 3 weeks for four doses, followed by nivolumab monotherapy every 2 weeks in 119 patients with refractory dMMR mCRC. This combination achieved an ORR of 55%.11 The study further expanded to include a cohort of 45 patients, evaluating the dual ICI regimen of nivolumab and ipilimumab as first-line therapy in dMMR mCRC. Unlike the refractory setting, ipilimumab was administered at 1 mg/kg every 6 weeks, resulting in an ORR of 69% and a DCR of 84%.7 While direct comparisons between these cohorts are challenging, two noteworthy observations emerge. The addition of ipilimumab to nivolumab appeared to enhance the ORR, suggesting a synergistic effect in dMMR mCRC. Additionally, the modified dosing schedule of ipilimumab (1 mg/kg every 6 weeks) in the first-line setting was associated with fewer severe adverse events, indicating a more tolerable safety profile.

The multicenter KEYNOTE-177 trial was the first Phase III study, enrolling 307 participants, to demonstrate a statistically significant and clinically meaningful improvement in PFS with

pembrolizumab compared to investigator's choice of chemotherapy in the first-line treatment of MSI-H/dMMR mCRC. At final analysis, the median PFS was 16.5 months with pembrolizumab versus 8.2 months with chemotherapy (hazard ratio [HR]: 0.59). The ORR was also higher in the pembrolizumab arm (45.1% vs. 33.1%), with responses being more durable, and therapy was associated with a more favourable toxicity profile. Although the median overall survival (OS) was numerically longer with pembrolizumab (not reached vs. 36.7 months with chemotherapy), it did not reach statistical significance. This may have been influenced by a high crossover rate (60%) from chemotherapy to immunotherapy.¹²

Therapy Resistance

An important finding of the KEYNOTE-177 trial was that approximately one-third of patients in the pembrolizumab arm experienced disease progression within the first three months of treatment. The survival curves showed an early crossing, suggesting that a subset of patients initially fared better on chemotherapy than on pembrolizumab monotherapy. This raises the question of whether combining chemotherapy with ICI could help overcome this early resistance. This hypothesis is currently being tested in ongoing Phase III trials, such as the COMMIT study¹³, which is investigating atezolizumab (an anti-programmed cell death ligand 1 [PD-L1] monoclonal antibody) as monotherapy versus a combination of FOLFOX (folinic acid, fluorouracil, and oxaliplatin), bevacizumab, and atezolizumab as first-line therapy for dMMR mCRC.

Until recently, the only evidence suggesting that the addition of ipilimumab (anti-CTLA-4) to an anti-PD-1 agent could partially mitigate primary resistance to single-agent PD-1 blockade came from the first-line cohort of the Phase II CheckMate-142 trial. However, given the non-randomized nature of this trial, it was not possible to definitively conclude that dual ICI therapy was superior to PD-1 blockade alone.

This paradigm has now shifted with the recent data publication of the Phase III CheckMate 8HW trial, marking a significant milestone in the evolution of treatment strategies for dMMR mCRC.14,15 In this study, patients with dMMR mCRC, irrespective of the number of prior lines of therapy, were randomly assigned in a 2:2:1 ratio to one of the following treatment arms:

1) nivolumab 240 mg plus ipilimumab 1 mg/kg

every three weeks for four doses, followed by nivolumab 480 mg every four weeks (n=353);

2) nivolumab 240 mg every two weeks for six doses, followed by nivolumab 480 mg every four weeks (n=354); or 3) the investigator's choice of doublet chemotherapy (FOLFOX or FOLFIRI [folinic acid, fluorouracil, and irinotecan]), with or without bevacizumab or cetuximab (n=132). The dual independent primary endpoints were PFS for nivolumab plus ipilimumab versus chemotherapy (in the first-line setting) and PFS for nivolumab plus ipilimumab versus nivolumab monotherapy (across all lines of therapy) in patients with dMMR mCRC.

A total of 303 patients who had not previously received systemic treatment for their metastatic disease were included in the first phase of the analysis. The median PFS was not reached in the ICI arm, compared to 5.8 months in the chemotherapy arm (HR: 0.21; p<0.0001). Additionally, the incidence of grade 3–4 treatment-related adverse events (TRAEs) was lower in the ICI arm than in the chemotherapy group.

In the second phase of the analysis, 707 patients were randomized to receive either nivolumab plus ipilimumab or nivolumab monotherapy, regardless of prior lines of therapy. The combination of both ICIs resulted in a significant improvement in median PFS, which was not reached in the combination arm compared to 39.3 months in the nivolumab monotherapy arm (HR: 0.62, p=0.0003). Additionally, the ORR was 71% in the dual ICI arm compared to 58% in the nivolumab monotherapy arm, with 30% and 28% having complete responses, respectively. However, those benefits were accompanied by a slightly higher incidence of grade 3 or 4 TRAEs (22% vs. 14%). Further follow-up of the CheckMate 8HW trial is eagerly anticipated, particularly regarding OS outcomes. A summary of these findings and key results from other pivotal trials in MSI-H/dMMR mCRC is provided in Table 1.

In nearly all clinical trials evaluating ICIs, the therapeutic benefit of immunotherapy has remained consistent across various subgroups, irrespective of *BRAF* or *RAS* mutation status, the presence of Lynch syndrome, or the sites of metastases. This consistency underscores the broad applicability of ICIs in the treatment of dMMR mCRC, independent of underlying molecular or clinical characteristics.

Study (Year)	Phase	z	Population	Arms	Median OS	Median PFS	ORR	Grade 3-4 TRAEs
KEYNOTE-016 Cohort A (CRC) (2015) ⁵²²	=	14	Refractory MSI-H/dMMR CRC	PEMBRO 10 mg/kg q14d	80.8 (95% CI: 33.2-NE)	38.8 (95% CI: 8.1–NE)	56.1%	41%
CheckMate-142 First-line Cohort (2021) ⁷	=	45	Untreated MSI-H/dMMR mCRC	IPI 1 mg/kg q6w + NIVO 3 mg/kg q2w	Not reached	Not reached	%69	22%
CheckMate-142 Refractory Cohort (2017) ¹⁰	=	74	dMMR/MSI-H mCRC with ≥1 prior lines of therapy	NIVO 3 mg/kg q2w	Not reached	14.3 mo; 95% Cl: 4.3 – NE	31.1%	21%
KEYNOTE-177(2022) ¹² III	≡	307	Untreated MSI-H/dMMR mCRC	PEMBRO 200 mg/q3w vs. CT	NR vs 36.7 mo; HR: 0.74; 95% CI: 0.53-1.03; P= 0.036	16.5 mo vs 8.2; HR: 0.59; 95% CI: 0.45–0.79	45% vs. 33%	21.6% vs. 67.1%
CheckMate 8HW NIVO + IPI vs. CT (2024) ¹⁴	≡	303	MSI-H/dMMR mCRC	IPI 1 mg/kg + NIVO 240 mg q3w for 12 w followed by NIVO 480 mg q4w vs. CT	Not reported	NR (95% CI: 34.3-NE) vs. 6.2 mo (95% CI: 4.7-9.0)	Not reported	23% vs. 48%
CheckMate 8HW NIVO + IPI vs. NIVO (2025) ¹⁵	≡	707	MSI-H/dMMR mCRC	IPI 1 mg/kg + NIVO 240 mg q3w for 12 w followed by NIVO 480 mg q4w vs. NIVO 240 mg q2w for 12 w followed by NIVO 480 mg q4w	Not reported	NR vs. 39.3 mo; HR: 0.62; 95% CI: 0.48–0.81; P=0.0003	71% vs. 58%	22% vs. 14%

Table 1. Key results from pivotal ICI trials in MSI-H/dMMR mCRC; courtesy of Renata D'Alpino Peixoto, MD, PhD, and Thiago Miranda do Amaral, MD.

instability-high; **ne:** not evaluable; **NIVO**: nivolumab; **NR**: not reached; **OS**: overall survival; **PD-1**: programmed cell death protein 1; **PEMBRO**: pembrolizumab; **PFS**: progression-free survival; **TRAEs**: treatment-related adverse events; **w**: weeks. duration of response; HR: hazard ratio; IPI: ipilimumab; mCRC: metastatic colorectal cancer; mo: months; MSI-H, microsatellite Abbreviations: CI: confidence interval; CT: investigator's choice of chemotherapy; dMMR: deficient mismatch repair; DOR:

Remaining Questions for Immunotherapy use in dMMR mCRC

Several unanswered questions remain regarding the optimal use of ICIs in dMMR mCRC, including the ideal treatment duration. In pivotal clinical trials, patients with mCRC who do not experience disease progression or unacceptable toxicities typically receive ICIs for up to two years, after which treatment is discontinued. An observational cohort study involving 757 patients with dMMR mCRC treated with immunotherapy found that continuing treatment beyond two years did not improve OS. Furthermore, for patients who achieved a complete response, discontinuation of therapy after one year was not associated with any detrimental impact on OS.¹⁶

Another important consideration is the optimal therapy sequencing in patients with both dMMR and BRAF-mutated tumours. Approximately one-third of dMMR mCRC cases harbour the BRAF V600E mutation, often arising due to MLH1 promoter hypermethylation. Despite the recent positive results from the Phase III BREAKWATER trial, which demonstrated that adding encorafenib and cetuximab to FOLFOX in the first-line setting improved ORR and OS compared to standard chemotherapy in patients with pMMR BRAF V600E-mutated mCRC, most oncologists would prioritize ICIs for patients who are also dMMR.¹⁷ This preference is driven by the efficacy of ipilimumab plus nivolumab, which has been shown to induce complete responses in 30% of patients and provide durable responses. In such scenarios, the combination of FOLFOX, cetuximab, and encorafenib, as investigated in the BREAKWATER trial, could be considered in the second-line setting. Alternatively, encorafenib plus cetuximab, in alignment with the findings from the BEACON trial, may also represent a reasonable treatment option.¹⁸ Nonetheless, future clinical trials evaluating the role of combining BRAF inhibitors with cetuximab or panitumumab and ICIs would be highly informative.

Another unresolved question pertains to the potential benefit of adding an anti-CTLA-4 agent in patients who have progressed on single-agent anti-PD-1 or anti-PD-L1 therapy. There is a strong biological rationale supporting this approach. CTLA-4 primarily regulates T-cell activation during the initial immune response, whereas PD-1/PD-L1 signaling predominantly suppresses T-cell activity

within the tumour microenvironment. Combining anti-CTLA-4 with anti-PD-1 ICI may help overcome adaptive resistance mechanisms that emerge with anti-PD-1 monotherapy, thereby restoring immune activity against tumour cells. Some case reports have documented instances in which anti-PD-1 therapy had previously failed, but therapy response was recorded when ipilimumab was added to the regimen. 19,20

Another critical issue is the potential for false-positive dMMR results in local laboratory testing. Studies have indicated that up to 60% of patients who exhibit disease progression on their first imaging evaluation during immunotherapy were subsequently found to be false-positive for dMMR based on local laboratory assessments. This highlights the necessity of centralized confirmation of MMR status to ensure accurate patient selection for immunotherapy.²¹

Future Directions

Several novel strategies are currently under investigation to enhance the efficacy of ICIs in dMMR mCRC. These include combinations of ICIs with other ICIs, cytotoxic chemotherapy, monoclonal antibodies, targeted therapies, or novel agents. Additionally, ICIs are being incorporated into earlier stages of colorectal cancer treatment and are undergoing evaluation in neoadjuvant and adjuvant settings.

At present, pembrolizumab is approved across Canada for the first-line treatment of dMMR mCRC. However, while the approval of ipilimumab and nivolumab in this setting appears likely, it remains uncertain. Despite the clear clinical benefits associated with the addition of ipilimumab to nivolumab, this does need to be carefully balanced against increased toxicity and costs.

Correspondence

Renata D'Alpino Peixoto, MD, PhD Email: renata.peixoto@bccancer.bc.ca

Financial Disclosures

R.P.: None declared. T.A.: None declared.

References

- Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A Pooled Analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20(20):5322–30.
- Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.
- Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatelliteinstability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.
- Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of singleagent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167-75.
- Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.
- André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability– high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18.
- Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instabilityhigh/mismatch repair-deficient metastatic colorectal cancer: the Phase II CheckMate 142 study. J Clin Oncol. 2022;40(2):161–70.
- 8. Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–9.
- André T, Elez E, Lenz HJ, Jensen LH, Touchefeu Y, Van Cutsem E, et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial. Lancet. 2025;405(10476):383–95.
- Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.
- Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability– high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9.

- Diaz LA, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, openlabel, phase 3 study. Lancet Oncol. 2022;23(5):659– 70
- 13. Overman MJ, Yothers G, Jacobs SA, Sanoff HK, Cohen DJ, Guthrie KA, et al. Colorectal cancer metastatic dMMR immuno-therapy (COMMIT) study: A randomized phase III study of atezolizumab (atezo) monotherapy versus mFOLFOX6/bevacizumab/ atezo in the first-line treatment of patients (pts) with deficient DNA mismatch repair (dMMR) or . J Clin Oncol. 2024;42(3_suppl):TPS231-TPS231.
- André T, Elez E, Van Cutsem E, Jensen LH, Bennouna J, Mendez G, et al. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer. N Engl J Med. 2024;391(21):2014–26.
- André T, Elez E, Lenz HJ, Jensen LH, Touchefeu Y, Van Cutsem E, et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial. Lancet. 2025;405(10476):383–95.
- Margalit O, Stemmer A, Chapin WJ, Shacham-Shmueli E, Kopetz S, Andre T, et al. Duration of immunotherapy in dMMR/MSI-H metastatic colorectal cancer patients. Eur J Cancer. 2024;212:114336.
- Kopetz S, Yoshino T, Van Cutsem E, Eng C, Kim TW, Wasan HS, et al. Encorafenib, cetuximab and chemotherapy in BRAF-mutant colorectal cancer: a randomized phase 3 trial. Nat Med. 2025;31(3):901–8.
- Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T, et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol. 2021;39(4):273-84.
- Hamre TR, Stougaard JK, Havelund BM, Jensen LH, Hansen TF. Re-exposure to immunotherapy in metastatic colon cancer: A case report. Clin Case Reports. 2021;9(6):e04349.
- Das S, Allen A, Berlin J. Immunotherapy after immunotherapy: response rescue in a patient with microsatellite instability-high colorectal cancer post-pembrolizumab. Clin Colorectal Cancer. 2020;19(2):137–40.
- Cohen R, Hain E, Buhard O, Guilloux A, Bardier A, Kaci R, et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol. 2019;5(4):551.
- Bever KM, Durham JN, Qi H, Azad NS, Laheru D, Fisher GA, et al. 10-year follow up of a phase 2 clinical trial of pembrolizumab (pembro) in microsatellite instability-high (MSI-H)/mismatch repair deficient (dMMR) advanced solid tumors. J Clin Oncol. 2025;43(16_suppl):4019–4019.